« Air filtration with nanostructured electrospun membranes »

Abstract

The development of fibrous air filters exhibiting high air filtration efficiency, low energy consumption, and self-cleaning properties is a critical challenge to generate the next generation of resilient air filtration systems. Nano-fibrous mats typically exhibit higher particle capture efficiency but may also lead to higher airflow resistance compared to macro-fibrous materials due to their tighter structure. In this talk, novel catalytic membranes mats were fabricated through a one-pot synthesis from ammonium tetrathiomolybdate (ATTM) doped poly(acrylonitrile) (PAN) nanofibers for sub-micron diameter aerosol particle removal. The presence of ATTM as a dopant in conjunction with a PAN polymeric matrix was found to not only enhance the air filtration performance by increasing aerosol particle removal down to 300 nm, but also increase the photocatalytic properties of the PAN material. The enhanced separation properties compared to bare polymeric PAN nanofibrous membranes were attributed to surface nanotexturation of the fibers, leading to protrusions and pores across the nano-fiber structures, thus leading to more permeable and lightweight membranes with higher particle capture capacities. The samples were benchmarked against commercial glass fiber air filters and found to offer higher filtration efficiency, lower pressure drop, and higher quality factor than the commercial filters. Specifically, the quality factors of the catalytic nano-fiber membranes were found to be up to four times higher than that of the benchmarked commercial air filters for PM2.5 particles, while two times higher for 300 nm sized contaminants. The presence of the ATTM across the PAN matrix was also found to enhance the photocatalytic activity of the membranes by up to 130% compared to the bare PAN reference nanofibers. This novel strategy opens avenues to engineering advanced multifunctional catalytic membranes, to capture toxic particulate matter from air while offering self-cleaning properties when exposed to sunlight.
This talk will investigate various fibre design strategies for nanoparticles capture and remediation.

Conférence : Ludovic DUMEE – 12/11/2018
Tel : +33 (0)4 6714 9100 / Fax : +33 (0)4 6714 9119 -- Etablissements tutelles Partenaires
Institut Européen des Membranes
300 avenue du Prof. Emile Jeanbrau
34090 Montpellier
France
> Voir la carte
 
adresse postale :
Université de Montpellier - CC047
Place Eugène Bataillon
34095 Montpellier cedex 5
France
UM
 
Pôle Chimie UM
ENSCM
CNRS

© 2023 Institut Européen des Membranes - Mentions légales & crédits