

Offre de Stage Master 2 - Ingénieur

Titre	Optimisation de l'assemblage d'électrolyseurs MEA pour l'électrolyse du CO ₂
Superviseur	Dr. Damien VOIRY
Laboratoire	Institut Européen des Membranes (IEM), University of Montpellier, France
Contact	damien.voiry@umontpellier.fr, +33-4-67-14-91-15
Durée	4-6 mois

Titre du stage : Optimisation de l'assemblage d'électrolyseurs MEA pour l'électrolyse du CO₂

Contexte: L'augmentation rapide des niveaux de dioxyde de carbone (CO₂) dans l'atmosphère a motivé le développement de technologies de captage, d'utilisation et de stockage du carbone (CCUS). Parmi celles-ci, l'électrocatalyse convertissant le CO₂ capté en produits de valeur constitue une alternative prometteuse au simple stockage. La conversion électrochimique du CO₂ en produits chimiques d'intérêt (CO, hydrocarbures, alcools) est une voie prometteuse pour valoriser le CO₂ et contribuer à la transition énergétique. Un élément clé de la performance des électrolyseurs réside dans la formulation et la caractérisation des encres catalytiques, qui conditionnent la structure, l'adhérence et l'activité de la couche catalytique déposée sur l'électrode.

Cependant, son application industrielle présente encore des défis en termes de performances, stabilité et reproductibilité. Notre équipe, au travers de la start-up spin-off <u>E-ETHYLENE</u>, a développé des électrodes présentant une excellente sélectivité pour les composés multi-carbonés, ayant une plus grande valeur marchande.

Ce projet de stage, dans le cadre du projet *Companies & Campus* « BIO2ET », vise à développer des électrodes optimisées pour la conversion du CO₂ issus des procédés de biométhanisation (CO₂ biogénique).

Objectifs du stage:

Les électrolyseurs à membrane-électrode (MEA) constituent l'une des technologies les plus prometteuses pour convertir efficacement le CO₂ en produits chimiques de valeur. Les performances et la durabilité de ces dispositifs dépendent fortement de la qualité de l'assemblage membrane-électrode, qui conditionne le transport d'ions, la gestion de l'eau/gaz et l'efficacité de la réaction électrochimique.

Les objectifs spécifiques du stage sont :

- Mettre en œuvre différentes méthodes d'assemblage (pressage à chaud, collage, stratification) pour réaliser des MEA de différentes tailles, allant de 5 à 100cm².
- Étudier l'impact des paramètres d'assemblage (pression, température, nature du liant, épaisseur des couches) sur les propriétés mécaniques et électrochimiques pour la conversion du bioCO₂.

- Caractériser les interfaces (microscopie, spectroscopies, conductivité ionique).
- Corréler la structure et les propriétés des MEA avec leurs performances en électrolyse du CO₂.
- Utiliser les données acquises pour définir un protocole d'assemblage pour un électrolyseur multi-cellules (stack).

Compétences développées :

- Mise en forme et optimisation de dispositifs électrochimiques.
- Caractérisations structurales et électrochimiques avancées.
- Compréhension des enjeux liés aux technologies de conversion du CO₂.

Profil recherché:

Un(e) candidat(e) motivé(e) pour s'attaquer au défi de la valorisation du CO₂ par des procédé électrochimique. Étudiant(e) en chimie, matériaux ou procédés (niveau Master 1/2 ou école d'ingénieur), motivé(e) par la recherche expérimentale et intéressé(e) par les thématiques énergie et environnement.

Contact:

Damien Voiry, PhD Chercheur CNRS

Phone: +33-4-67-14-91-15

Institut Européen des Membranes (IEMM, ENSCM UM CNRS UMR5635)

Place Eugène Bataillon, 34095 MONTPELLIER Cedex 5, France

https://lowdimensional-materials.net