Tran Duc TRUNG

[fr]a soutenu sa thèse le 18 juillet 2019
[en]defended his PhD thesis

Elaboration et mise en œuvre de membranes composites polymère-TiO2 faiblement colmatantes

Préparée au sein de l’école doctorale Sciences GAIA et de l’Institut Européen des Membranes (UMR 5635)

Spécialité : Génie des Procédés

devant le jury composé de :

• Mme. Christel CAUSSERAND, Professeur, Université Paul Sabatier – Rapporteur
• M. Gaël PLANTARD, Professeur, Université de Perpignan – Rapporteur
• M. Philippe MOULIN, Professeur, Université d’Aix-Marseille – Examinateur
• M. Denis BOUYER, Professeur, Université de Montpellier – Examinateur
• M. Stephan BROSILLON, Professeur, Université de Montpellier – Directeur de thèse
• Mme. Catherine FAUR, Professeur, Université de Montpellier – Co-directrice de thèse
• M. Jean-Pierre MÉRICQ, Docteur, Université de Montpellier – Invité

Résumé :
Cette thèse porte sur l’élaboration et l’étude des performances de membranes d’ultrafiltration PVDF-TiO2 possédant des propriétés anti-colmatantes et photo-induites. La membrane est obtenue par application de la méthode de séparation de phases induite par un non-solvant sur un collodion de polyfuorure de vinylidène au sein duquel ont été incoporées des nanoparticules de TiO2. Il est montré : i) que la presence des nanoparticules de TiO2 les propriétés membranaires, et notamment le flux de perméat, par rapport à la membrane PVDF ; ii) que l’augmentation de la température de préparation de la membrane permettait de modifier la structure membranaire, en passant d’une morphologie constituée principalement de macrovides (dite en “doigts de gants”) à des températures basses à une morphologie spongieuse, contenant des pores de plus petite taille, à temperature élevée. Au-delà de la structure membranaire, des propriétés telles que la perméabilité, la porosité, la résistance mécanique, la cristallinité et les propriétés thermiques sont également influences par les changements de température de formation. Lorsque les membranes PVDF-TiO2 sont mises en oeuvre en mode photo-filtration (c.-à-d. filtration avec irradiation ultraviolette (UV) continue sur la membrane), le flux à l’eau pure de la membrane PVDF-TiO2 est encore augmenté, du fait du phénomène d’hydrophilicité photo-induite des nanoparticules de TiO2. Des premières estimations suggèrent que la photo-filtration par les membranes PVDF-TiO2 serait une économiquement rentable, car le gain en termes de filtration et qualité d’eau l’emporterait sur le cout énergétique induit par l’irradiation UV. En outre, l’efficacité de la photo-filtration a été évaluée avec des solutions d’alimentation synthétiques contenant des composés inorganiques et organiques représentatifs des eaux de surface. Il a été montré que si la plupart des ions inorganiques communément rencontrés dans l’eau potable n’ont aucun effet sur l’efficacité de la photo-filtration, la coexistence de Cu2+ et HCO3- dans l’eau d’alimentation entraîne un colmatage inorganique sévère qui inhibe le phénomène hydrophilicité photoinduite. En outre, la membrane PVDF-TiO2 présente également des flux plus élevés et une activité photocatalytique lors de la photo-filtration de solutions contenant des matières colmatantes organiques comme les acides humiques ou l’alginate de sodium. En conclusion, la membrane composite PVDF-TiO2 a démontré des propriétés et des performances significativement améliorées par rapport à la membrane PVDF, a fortioti lorsqu’elle est mise en oeuvre dans un système de photo-filtration sous irradiation UV. Ainsi, ce sont des matériaux prometteurs pour des applications membranaires en traitement de l’eau.

Abstract:
This thesis deals with the elaboration and performance of a specific type of ultrafiltration membrane with anti-fouling and photo-induced properties, the PVDF-TiO2 composite membrane. The membrane was fabricated via the nonsolvent-induced phase separation method by incorporating titanium dioxide (TiO2) nanoparticles into the polyvinylidene fluoride (PVDF) polymer matrix. The TiO2 nanoparticles played a significant role in facilitating the membrane formation process and improving the composite membrane properties compared to the neat PVDF membrane. It was demonstrated that, by changing the membrane preparation temperature, the membrane structure could be affected dramatically, notably the morphological dominance of finger-like macrovoids at lower temperatures and their diminution in both size and number when temperature increased. Other membrane properties also saw systematic transitions with changes in formation temperature, as characterized by permeability, porosity, mechanical strength, crystallinity, and thermal properties. In terms of performance, the PVDF-TiO2 membrane exhibited superior permeate flux compared to the neat PVDF membrane. More importantly, when being operated in photo-filtration mode (i.e. filtration with continuous ultraviolet (UV) irradiation on the membrane), the pure water flux of PVDF-TiO2 membrane could be further increased, thanks to the enhanced hydrophilicity of the membrane, which comes from the photo-induced hydrophilicity phenomenon of TiO2. Preliminary estimations suggest that photo-filtration is a cost-effective method, as the benefit from enhanced water output outweighs the extra energy demand for UV irradiation. Furthermore, the efficiency of photo-filtration was evaluated with synthetic feed solutions containing inorganic and organic contents representative in surface water. It was identified that, while most of the common inorganic ions in drinking water had no effects on photo-filtration efficiency, the coexistence of Cu2+ and HCO3- in the feed led to severe inorganic fouling and inhibited the photo-induced hydrophilicity phenomenon. Besides, the PVDF-TiO2 membrane also showed its stronger flux performance and photocatalytic activity during photo-filtration of solutions containing organic foulants like humic acids or sodium alginate. In conclusion, the PVDF-TiO2 composite membrane exhibited much improved properties and performance compared to the neat PVDF membrane, and even stronger performance when operated in photo-filtration mode. Thus, it is a promising candidate to be used in membrane-based applications for water treatment.

Soutenance de thèse de Tran Duc TRUNG – 18/7/2019
Tel : +33 (0)4 6714 9100 / Fax : +33 (0)4 6714 9119 -- Etablissements tutelles Partenaires
Institut Européen des Membranes
300 avenue du Prof. Emile Jeanbrau
34090 Montpellier
France
> Voir la carte
 
adresse postale :
Université de Montpellier - CC047
Place Eugène Bataillon
34095 Montpellier cedex 5
France
UM
 
Pôle Chimie UM
ENSCM
CNRS

© 2023 Institut Européen des Membranes - Mentions légales & crédits